1). $ \displaystyle \sum_{k=1}^{n} \, c = n . c \, $ , dengan $ c \, $ adalah konstanta.
bentuk lebih umumnya : $ \displaystyle \sum_{k=m}^{n} \, c = (n-m+1) . c $
2). $ \displaystyle \sum_{k=m}^{n} \, c a_k = c \times \displaystyle \sum_{k=m}^{n} \, a_k $.
3). $ \displaystyle \sum_{k=m}^{n} \, (a_k + b_k) = \displaystyle \sum_{k=m}^{n} \, a_k + \displaystyle \sum_{k=m}^{n} \, b_k $.
4). $ \displaystyle \sum_{k=m}^{n} \, (a_k - b_k) = \displaystyle \sum_{k=m}^{n} \, a_k - \displaystyle \sum_{k=m}^{n} \, b_k $.
5). $ \displaystyle \sum_{k=n}^{n} \, a_k = 0 $.
6). $ \displaystyle \sum_{k=m}^{n} \, a_k = \displaystyle \sum_{k=m}^{p-1} \, a_k + \displaystyle \sum_{k=p}^{n} \, a_k $.
7). $ \displaystyle \sum_{k=m}^{n} \, a_k = \displaystyle \sum_{k=m+p}^{n+p} \, a_{k-p} = \displaystyle \sum_{k=m-p}^{n-p} \, a_{k+p} $.
dengan nilai $ m < p < n $
Agar lebih jelas silakan lihat aplikasi sifat sifat notasi sigma tersebut dalam contoh soal dan penyelesaian di bawah ini.
- $ \displaystyle \sum_{k=5}^{2016} \, 4 $
- $ \displaystyle \sum_{k=1}^{5} \,2k $
- $ \displaystyle \sum_{k=1}^{5} \,(k^2 + 3k) $
- Tentukan Hasil dari $ \displaystyle \sum_{k=2}^{2016} \,(2k -1)^2 - 4\displaystyle \sum_{k=2}^{2016} \,(k^2 - k + 1) \, $ !
- Diketahui nilai $ \displaystyle \sum_{i=1}^{36} f(i) = 245 \, $ dan $ \displaystyle \sum_{i=20}^{36} f(i) = 145 , \, $ maka nilai dari $ \displaystyle \sum_{i=1}^{19} f(i) \, $ adalah
- Bila nilai $ \displaystyle \sum_{k=1}^{20} k = x \, $ . Tentukan nilai dari $ \displaystyle \sum_{k=1001}^{1020} (2k - 1999) \, $ ?
Penyelesaian:
1. $ \displaystyle \sum_{k=5}^{2016} \, 4 $
Gunakan sifat (1) : $ \displaystyle \sum_{k=m}^{n} \, c = (n-m+1) . c $
$ \begin{align} \displaystyle \sum_{k=5}^{2016} \, 4 & = \underbrace{4 + 4 + 4 + ... + 4}_{\text{sebanyak } (2016 - 5 + 1) } \\ & = (2016 - 5 + 1) . 4 \\ & = (2012) . 4 \\ & = 8048 \end{align} $
2. $ \displaystyle \sum_{k=1}^{5} \,2k $
Gunakan sifat (2) : $ \displaystyle \sum_{k=m}^{n} \, c a_k = c \times \displaystyle \sum_{k=m}^{n} \, a_k $.
$ \begin{align} \displaystyle \sum_{k=1}^{5} \,2k & = 2 \times \displaystyle \sum_{k=1}^{5} \, k \\ & = 2 \times (1 + 2 + 3 + 4 + 5) \\ & = 2 \times (15) \\ & = 30 \end{align} $
3. $ \displaystyle \sum_{k=1}^{5} \,(k^2 + 3k) $
Gunakan sifat (3) : $ \displaystyle \sum_{k=m}^{n} \, (a_k + b_k) = \displaystyle \sum_{k=m}^{n} \, a_k + \displaystyle \sum_{k=m}^{n} \, b_k $.
$ \begin{align} \displaystyle \sum_{k=1}^{5} \,(k^2 + 3k) & = \displaystyle \sum_{k=1}^{5} \,k^2 + \displaystyle \sum_{k=1}^{5} \, 3k \\ & = (1^2 + 2^2 + 3^2 + 4^2 + 5^2) + 3 \times \displaystyle \sum_{k=1}^{5} \, k \\ & = (1 + 4 + 9 + 16 + 25) + 3 \times (1 + 2 + 3 + 4 + 5) \\ & = (55) + 3 \times (15) \\ & = (55) + 45 \\ & = 100 \end{align} $
5. Gunakanlah sifat (6) : $ \displaystyle \sum_{k=m}^{n} \, a_k = \displaystyle \sum_{k=m}^{p-1} \, a_k + \displaystyle \sum_{k=p}^{n} \, a_k $.
$ \begin{align} \displaystyle \sum_{i=1}^{36} f(i) & = \displaystyle \sum_{i=1}^{19} f(i) + \displaystyle \sum_{i=20}^{36} f(i) \\ 245 & = \displaystyle \sum_{i=1}^{19} f(i) + 145 \\ \displaystyle \sum_{i=1}^{19} f(i) & = 100 \end{align} $
Jadi, nilai $ \displaystyle \sum_{i=1}^{19} f(i) = 100 $
6. Gunakan sifat (7) : $ \displaystyle \sum_{k=m}^{n} \, a_k = \displaystyle \sum_{k=m-p}^{n-p} \, a_{k+p} $.
$ \begin{align} \displaystyle \sum_{k=1001}^{1020} (2k - 1999) & = \displaystyle \sum_{k=1001 - 1000}^{1020 -1000} (2(k+1000) - 1999) \\ & = \displaystyle \sum_{k=1}^{20} (2k + 2000 - 1999) \\ & = \displaystyle \sum_{k=1}^{20} (2k + 1) \, \, \, \, \, \text{(sifat 3)} \\ & = \displaystyle \sum_{k=1}^{20} 2k + \displaystyle \sum_{k=1}^{20} \, (1) \, \, \, \, \, \text{(sifat 1 dan 2)} \\ & = 2\displaystyle \sum_{k=1}^{20} k + (20-1+1) \times 1 \\ & = 2 x + 20 \end{align} $
Jadilah Komentator Pertama untuk "Sifat Sifat Notasi Sigma"
Post a Comment