f′(x)=limh→0f(x+h)−f(x)hdengan syarat nilai limit ada
#Pembuktian Rumus Turunan y=f(x)=k
Untuk penurunan rumus turunan y = f(x)= k , berikut uraiannya.
y=k→f(x)=k
f(x+h)=k
f′(x)=limh→0f(x+h)−f(x)h=limh→0k−kh=limh→00h=limh→00=0
Terbukti : f(x)=k→f′(x)=0
#Pembuktian rumus Turunan y=axn→y′=n.a.xn−1
Beberapa rumus lain yang digunakan dalam pembuktian ini,
Binomial Newton
(x+h)n=xn+Cn1xn−1h1+Cn2xn−2h2+…+Cnn−1xnhn−1+hn
Rumus Kombinasi : Cnr=n!(n−r)!r!
Sehingga : Cn1=n!(n−1)!.1!=n.n(n−1)!(n−1)!=n
Dengan n!=n.(n−1).(n−2)….3.2.1 . Misalkan : 5!=5.4.3.2.1=120
Uraian Pembuktian:
y=axn→f(x)=axn
f(x+h)=a(x+h)n=a(xn+Cn1xn−1h1+Cn2xn−2h2+…+Cnn−1xnhn−1+hn)
f(x+h)=axn+aCn1xn−1h1+aCn2xn−2h2+…+aCnn−1xnhn−1+ahn
diturunkan:
f′(x)=limh→0f(x+h)−f(x)h=limh→0(axn+aCn1xn−1h1+aCn2xn−2h2+…+aCnn−1xnhn−1+ahn)−axnh=limh→0aCn1xn−1h1+aCn2xn−2h2+…+aCnn−1xnhn−1+ahnh=limh→0aCn1xn−1+aCn2xn−2h1+…+aCnn−1xnhn−2+ahn−1=aCn1xn−1+aCn2xn−2.0+…+aCnn−1xn.0n−2+a.0n−1=aCn1xn−1+0+…+0+0=aCn1xn−1=anxn−1
Terbukti : f(x)=axn→f′(x)=n.a.xn−1=naxn−1
Pembuktian rumus Turunan : y=U±V→y′=U′±V′
f(x)=U(x)+V(x)→f′(x)=U′(x)+V′(x)
Fungsinya:
f(x)=U(x)+V(x)
f(x+h)=U(x+h)+V(x+h)
Diturunkan :
f′(x)=limh→0f(x+h)−f(x)h=limh→0[U(x+h)+V(x+h)]−[U(hx)+V(x)]h=limh→0U(x+h)−U(x)+V(x+h)−V(x)h=limh→0U(x+h)−U(x)h+V(x+h)−V(x)h=limh→0U(x+h)−U(x)h+limh→0V(x+h)−V(x)h=U′(x)+V′(x)
Terbukti : f(x)=U(x)+V(x)→f′(x)=U′(x)+V′(x)
#Pembuktian rumus Turunan : U.V= U’V+UV’
Fungsinya :
y=U.V→f(x)=U(x).V(x)
f(x+h)=U(x+h).V(x+h)
Diturunkan :
f′(x)=limh→0f(x+h)−f(x)h=limh→0U(x+h).V(x+h)−U(x).V(x)h=limh→0U(x+h).V(x+h)−U(x).V(x)+[U(x+h).V(x)−U(x+h).V(x)]h=limh→0[U(x+h).V(x+h)−U(x+h).V(x)]+[U(x+h).V(x)−U(x).V(x)]h=limh→0U(x+h)[V(x+h)−V(x)]+V(x)[U(x+h)−U(x)]h=limh→0U(x+h)[V(x+h)−V(x)]h+V(x)[U(x+h)−U(x)]h=limh→0U(x+h)[V(x+h)−V(x)]h+limh→0V(x)[U(x+h)−U(x)]h=limh→0U(x+h)V(x+h)−V(x)h+limh→0V(x)U(x+h)−U(x)h=limh→0V(x)U(x+h)−U(x)h+limh→0U(x+h)V(x+h)−V(x)h=limh→0V(x)limh→0U(x+h)−U(x)h+limh→0U(x+h)limh→0V(x+h)−V(x)h=V(x).U′(x)+U(x+0).V′(x)=V(x).U′(x)+U(x).V′(x)=U′(x).V(x)+U(x).V′(x)
Terbukti : y=U.V→y′=U′.V+U.V′
#Pembuktian rumus Turunan U/V
Fungsinya
y=UV→f(x)=U(x)V(x)
f(x+h)=U(x+h)V(x+h)
Diturunkan
f′(x)=limh→0f(x+h)−f(x)h=limh→0U(x+h)V(x+h)−U(x)V(x)h=limh→0V(x).U(x+h)−U(x).V(x+h)V(x).V(x+h)h=limh→0V(x).U(x+h)−U(x).V(x+h)h.V(x).V(x+h)=limh→0V(x).U(x+h)+[−V(x).U(x)+U(x).V(x)]−U(x).V(x+h)h.V(x).V(x+h)=limh→0[V(x).U(x+h)−V(x).U(x)]+[U(x).V(x)−U(x).V(x+h)]h.V(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]+U(x)[V(x)−V(x+h)]h.V(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]h−U(x)[V(x+h)−V(x)]hV(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]h−limh→0U(x)[V(x+h)−V(x)]hlimh→0V(x).V(x+h)=limh→0V(x)limh→0[U(x+h)−U(x)]h−limh→0U(x)limh→0[V(x+h)−V(x)]hlimh→0V(x).V(x+h)=V(x)U′(x)−U(x)V′(x)V(x).V(x+0)=U′(x).V(x)−U(x).V′(x)V(x).V(x)=U′(x).V(x)−U(x).V′(x)[V(x)]2
Terbukti : y=UV→y′=U′.V−U.V′V2
f(x+h)=U(x+h).V(x+h)
Diturunkan :
f′(x)=limh→0f(x+h)−f(x)h=limh→0U(x+h).V(x+h)−U(x).V(x)h=limh→0U(x+h).V(x+h)−U(x).V(x)+[U(x+h).V(x)−U(x+h).V(x)]h=limh→0[U(x+h).V(x+h)−U(x+h).V(x)]+[U(x+h).V(x)−U(x).V(x)]h=limh→0U(x+h)[V(x+h)−V(x)]+V(x)[U(x+h)−U(x)]h=limh→0U(x+h)[V(x+h)−V(x)]h+V(x)[U(x+h)−U(x)]h=limh→0U(x+h)[V(x+h)−V(x)]h+limh→0V(x)[U(x+h)−U(x)]h=limh→0U(x+h)V(x+h)−V(x)h+limh→0V(x)U(x+h)−U(x)h=limh→0V(x)U(x+h)−U(x)h+limh→0U(x+h)V(x+h)−V(x)h=limh→0V(x)limh→0U(x+h)−U(x)h+limh→0U(x+h)limh→0V(x+h)−V(x)h=V(x).U′(x)+U(x+0).V′(x)=V(x).U′(x)+U(x).V′(x)=U′(x).V(x)+U(x).V′(x)
Terbukti : y=U.V→y′=U′.V+U.V′
#Pembuktian rumus Turunan U/V
Fungsinya
y=UV→f(x)=U(x)V(x)
f(x+h)=U(x+h)V(x+h)
Diturunkan
f′(x)=limh→0f(x+h)−f(x)h=limh→0U(x+h)V(x+h)−U(x)V(x)h=limh→0V(x).U(x+h)−U(x).V(x+h)V(x).V(x+h)h=limh→0V(x).U(x+h)−U(x).V(x+h)h.V(x).V(x+h)=limh→0V(x).U(x+h)+[−V(x).U(x)+U(x).V(x)]−U(x).V(x+h)h.V(x).V(x+h)=limh→0[V(x).U(x+h)−V(x).U(x)]+[U(x).V(x)−U(x).V(x+h)]h.V(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]+U(x)[V(x)−V(x+h)]h.V(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]h−U(x)[V(x+h)−V(x)]hV(x).V(x+h)=limh→0V(x)[U(x+h)−U(x)]h−limh→0U(x)[V(x+h)−V(x)]hlimh→0V(x).V(x+h)=limh→0V(x)limh→0[U(x+h)−U(x)]h−limh→0U(x)limh→0[V(x+h)−V(x)]hlimh→0V(x).V(x+h)=V(x)U′(x)−U(x)V′(x)V(x).V(x+0)=U′(x).V(x)−U(x).V′(x)V(x).V(x)=U′(x).V(x)−U(x).V′(x)[V(x)]2
Terbukti : y=UV→y′=U′.V−U.V′V2
Jadilah Komentator Pertama untuk "Pembuktian dan Penurunan Rumus Turunan"
Post a Comment