Bunyi dalil Intercep pada Segitiga, jika dimisalkan kita
memiliki segitiga PQR seperti gambar berikut,
Jika terdapat suatu garis sejajar dengan sisi segitiga, pada segitiga di atas misalkan TU// PQ dan garis tersebut memotong dua sisi lainnya maka berlaku perbandingan :
$ \frac {RT}{RP} = \frac {RU}{UQ} = \frac {TU}{PQ}$
Pembuktian dalil intercep pada segitiga ini bisa menggunakan kesebangunan pada segitiga. Kita bisa perhatika bahwasanya segitiga RTU sebangun dengan segitiga RPQ (sudut P = sudut T,sudut R= sudut R,sudut U=sudut Q). Oleh sebab itu, maka berlakulah $ \frac {RT}{RP} = \frac {RU}{UQ} = \frac {TU}{PQ}$
Aplikasi dalil intercep ini dalam contoh soal bisa diperhatikan di bawah ini,
#1.Diberikan segitiga seperti gambar di bawah ini,
Hitunglah nilai x dan y!
Jawab:
Dengan menggunakan dalil intercep akan di peroleh, $ x $ ,
$ \begin{align} \frac{PU}{UR} & = \frac{PT}{TQ} \\ \frac{x}{3} & = \frac{3}{2} \\ x & = \frac{3}{2} \times 3 \\ & = \frac{9}{2} \\ & = 4,5 \end{align} $.
Sehingga panjang $ x = 4,5 $.
Dan untuk menghitung nilai $ y $ ,
$ \begin{align} \frac{TU}{QR} & = \frac{PT}{PQ} \\ \frac{y}{10} & = \frac{3}{5} \\ y & = \frac{3}{5} \times 10 \\ & = \frac{30}{5} \\ & = 6 \end{align} $.
Artinya panjang $ y = 6 $.
#2. Dari gambar berikut, tentukan nilai $ a +b $.
Jawab :
Menghitung nilai $ a $.
Pada segitiga AFG berlaku,
$ \frac{DE}{FG} = \frac{AD}{AF} \rightarrow \frac{a}{10} = \frac{1}{2} \rightarrow a = 5 $.
Mencari nilai $ b $.
Pada segitiga ABC berlaku,
$ \frac{FG}{BC} = \frac{AF}{AB} \rightarrow \frac{10}{b} = \frac{2}{3} \rightarrow b = 15 $.
Sehingga nilai $ a + b = 5 + 15 = 20 $.
Cara Alternatif:
pada soal tersebut juga berlaku
$ a + b = 2 \times 10 = 20 $.
Sebab, bila garis $ FG = m , \, $ maka $ a + b = 2m $.
Menghitung nilai $ a $.
Pada segitiga AFG berlaku,
$ \frac{DE}{FG} = \frac{AD}{AF} \rightarrow \frac{a}{10} = \frac{1}{2} \rightarrow a = 5 $.
Mencari nilai $ b $.
Pada segitiga ABC berlaku,
$ \frac{FG}{BC} = \frac{AF}{AB} \rightarrow \frac{10}{b} = \frac{2}{3} \rightarrow b = 15 $.
Sehingga nilai $ a + b = 5 + 15 = 20 $.
Cara Alternatif:
pada soal tersebut juga berlaku
$ a + b = 2 \times 10 = 20 $.
Sebab, bila garis $ FG = m , \, $ maka $ a + b = 2m $.
Jadilah Komentator Pertama untuk "Dalil Intercep pada Segitiga"
Post a Comment