Volume daerah 1 Kurva
Perhatikan dua gambar di bawah ini, misalkan daerah awal abu abu, dan hasil pemutaran dengan warna kuning,
Volume benda putar yang dibatasi oleh kurva $ y = f(x) , \, x = a, \, x = b, \, $ dan sumbu X diputar terhadap sumbu Y sejauh $ 360^\circ \, $ adalah
$Volume \, = 2\pi \int \limits_a^b xy dx = 2\pi \int \limits_a^b xf(x) dx $
Volume benda putar yang dibatasi oleh kurva $ x = f(y) , \, y = a, \, y = b, \, $ dan sumbu Y diputar terhadap sumbu X sejauh $ 360^\circ \, $ adalah
$ Volume\, = 2\pi \int \limits_a^b xy dy = 2\pi \int \limits_a^b f(y) . y dy $
Contoh Soal dan Pembahasan:
Soal 1. Hitunglah volume benda putar yang dibatasi oleh kurva $ y = -x^3 + 4x , \, x = 0, \, x = 1 , \, $ dan sumbu X yang diputar mengelilingi sumbu Y $ 360^\circ $ !
Pembahasan:
Jika gambarkan akan diperoleh,
Volume bisa dihitung sebagai berikut,
$\begin{align} V & = 2\pi \int \limits_a^b xy dx \\ & = 2\pi \int \limits_0^1 x(-x^3 + 4x) dx \\ & = 2\pi \int \limits_0^1 (-x^4 + 4x^2) dx \\ & = 2\pi [\frac{-1}{5}x^5 + \frac{4}{3}x^3]_0^1 \\ & = 2\pi ( [\frac{-1}{5}.1^5 + \frac{4}{3}.1^3] - [\frac{-1}{5}.0^5 + \frac{4}{3}.0^3]) \\ & = 2\pi ( [\frac{-1}{5} + \frac{4}{3} ] - [0]) \\ & = 2\pi ( \frac{-3}{15} + \frac{20}{15} ) \\ & = 2\pi ( \frac{17}{15} ) \\ & = \frac{34}{15} \pi \\ & = 2\frac{4}{15} \pi \end{align} $
Volume Daerah dibatasi 2 Kurva
Untuk menghitung volume benda putar dengan metode kulit tabung pada kasus dua kurva anda bisa gunakan rumus berikut.
Diputar Mengelilingi sumbu X dan batas di sumbu Y
Volume benda putar yang dibatasi oleh kurva $ x = f(y) , \, x = g(y) , \, y = a, \, y = b, \, $ dan sumbu Y diputar terhadap sumbu X sejauh $ 360^\circ \, $ dengan $ |f(y)| \geq |g(y)| \, $ adalah
$ Volume\, = 2\pi \int \limits_a^b xy dy = 2\pi \int \limits_a^b [f(y) - g(y)] y dy $
Volume benda putar yang dibatasi oleh kurva $ y = f(x) , \, y = g(x) , \, x = a, \, x = b, \, $ dan sumbu X diputar terhadap sumbu Y sejauh $ 360^\circ \, $ dengan $ |f(x)| \geq |g(x)| \, $ adalah
$ Volume \, = 2\pi \int \limits_a^b xy dx = 2\pi \int \limits_a^b x[f(x) - g(x)] dx $
Contoh Soal dan Penyelesaian
Hitunglah volume benda putar yang dibatasi oleh kurva $ y = \frac{1}{3}x^2 , \, y = x , \, x = 0, \, x = 2 , \, $ dan sumbu X yang diputar mengelilingi sumbu Y $ 360^\circ $ !
Pembahasan:
Jika digambarkan akan diperoleh bentuk daerah asal,
Volume jika area tersebut diputar terhadap sumbu y bisa dihitung sebagai berikut,
$\begin{align} V & = 2\pi \int \limits_a^b x[f(x) - g(x)] dx \\ & = 2\pi \int \limits_0^2 x[x - \frac{1}{3}x^2] dx \\ & = 2\pi \int \limits_0^2 (x^2 - \frac{1}{3}x^3) dx \\ & = 2\pi [\frac{1}{3}x^3 - \frac{1}{12}x^4]_0^2 \\ & = 2\pi ( [\frac{1}{3}.2^3 - \frac{1}{12}.2^4] - [\frac{1}{3}.0^3 - \frac{1}{12}.0^4] ) \\ & = 2\pi ( [\frac{8}{3} - \frac{4}{3} ] - [0] ) \\ & = 2\pi ( [\frac{4}{3} ] ) \\ & = \frac{8}{3} \pi \\ & = 2\frac{2}{3} \pi \end{align} $
Jadilah Komentator Pertama untuk "Menentukan Volume Benda Putar dengan Integral (Metode Kulit Tabung)"
Post a Comment