Beriklan di Blog Ini? .
MURAH DAN MUDAH.
Info Lebih Lanjut [ KONTAK KAMI]

Menghitung Nilai Akar Bilangan dengan Metode Newton Raphson

Salah satu aplikasi penggunaan metode Newton Raphson adalah menghitung atau menentukan akar sebuah bilangan. Bagaimana ya cara menentukan Akar bilangan dengan metode Newton Raphson ini?
Langkah Menghitung Akar sebuah Bilangan dengan Metode Newton Raphson,
1) Buatlah Permisalan dimana nilai yang akan dicari dengan x
2) Bentuk permisalan di atas menjadi f(x) =0. Kita akan Gunakan beberapa sifat pangkat dalam penyelesaian ini diantaranya,
$ \sqrt[n]{a} = a^\frac{1}{n} ; \, \sqrt[n]{a^m} = a^\frac{m}{n} ; $
$ a^\frac{1}{n} = b \rightarrow a = b^n $
3) Hitung dengan metode Newton Raphson, Baca: Perhitungan Iterasi Metode Newton Raphson.
Untuk memudahkan memahami langkah di atas, mari kita lihat contoh soal dan pembahasan metode Newton Raphson dalam menghitung akar bilangan berikut ini,

Tentukanlah nilai $ \sqrt[5]{37} \, $
Pembahasan:
e = window.adsbygoogle || []).push({}); Langkah 1. Misal $ \sqrt[5]{37} = x $
Langkah 2. $ f(x) = 0 $ . Sehingga bila digoyang sedikit akan menjadi
$$ \begin{align} x & = \sqrt[5]{37} \\ x & = 37^\frac{1}{5} \\ x^5 & = 37 \\ x^5 – 37 & = 0 \end{align} $$
Nah kita dapatkan,
$$ f(x) = x^5 – 37 $$
Turunan pertamanya : $ f^\prime (x) = 5x^4 $ .
Langkah 3. Kita hitung dengan metode Newton Raphson
Diambil nilai awal $ x_0 = 2 \, $ (nilai awal yang diambil terserah Anda). Lanjut kita lakukan iterasi,
 $ x_0 = 2 \, $ pada rumus : $$ x_{k+1} = x_k – \frac{f(x_k)}{f^\prime (x_k)} $$ .
iterasi ke-1 untuk $ x_1 $
$$ \begin{align} x_0 = 2 \rightarrow f(x_0) & = f(2) = 2^5 – 37 = -5 \\ f^\prime (x_0) & = f^\prime (2) = 5.2^4 = 80 \\ k = 0 \rightarrow x_{k+1} & = x_k – \frac{f(x_k)}{f^\prime (x_k)} \\ x_{0+1} & = x_0 – \frac{f(x_0)}{f^\prime (x_0)} \\ x_{1} & = 2 – \frac{-5}{80} \\ x_{1} & = 2,0625 \end{align} $$
iterasi ke-2 untuk $ x_2 $
 $x_1 = 2,0625 \rightarrow f(x_1)  = f(2,0625) = (2,0625)^5–37 = 0,322419167$
 $f' (x_1)  = f' (2,0625) = 5.(2,0625)^4 = 90,47859192$
$k=1 \rightarrow x_{k+1}=x_k- \frac {f(x-k)}{f'(x-k)} $
$x_{1+1}=x_1 - \frac {f(x_1)}{f'(x-1)} \\ x_{2}  = 2,0625 - \frac{0,322419167}{90,47859192} \\ x_{2}  = 2,05893651$

iterasi ke-3 untuk $ x_3 $
$$\begin{align} x_2 = 2,05893651 \rightarrow f(x_2) & = f(2,05893651) = (2,05893651)^5-37 = 0,001112197 \\ f^\prime (x_2) & = f^\prime (2,05893651) = 5.(2,05893651)^4 = 89,85491281 \\ k = 2 \rightarrow x_{k+1} & = x_k - \frac{f(x_k)}{f^\prime (x_k)} \\ x_{2+1} & = x_2 - \frac{f(x_2)}{f^\prime (x_2)} \\ x_{3} & = 2,05893651- \frac{0,001112197 }{89,85491281} \\ x_{3} & = 2,05892414 \end{align}$$
iterasi ke-4 untuk $ x_4 $
$$ \begin{align} x_3 = 2,05892414 \rightarrow f(x_3) & = f(2,05892414) = (2,05892414)^5 - 37 = 1,33723 \times 10^{-8} \\ f^\prime (x_3) & = f^\prime (2,05892414) = 5.(2,05892414)^4 = 89,85275211 \\ k = 3 \rightarrow x_{k+1} & = x_k- \frac{f(x_k)}{f^\prime (x_k)} \\ x_{3+1} & = x_3 -\frac{f(x_3)}{f^\prime (x_3)} \\ x_{4} & = 2,05892414 -\frac{1,33723 \times 10^{-8} }{89,85275211} \\ x_{4} & = 2,05892414 \end{align}$$

Karena iterasi ke-3 dan ke-4 sudah sama, $ x_3 = x_4 = 2,05892414 \, $ Iterasi selesai, dengan demikian kita dapatkan nilai x tersebut adalah $ x = 2,05892414$
Jadi, nilai $ \sqrt[5]{37} = 2,05892414 \, $. Selanjutnya: Cara Mencari Titik Potong 2 Kurva dengan Metode Newton Raphson


Jadilah Komentator Pertama untuk "Menghitung Nilai Akar Bilangan dengan Metode Newton Raphson"

Post a Comment