Beriklan di Blog Ini? .
MURAH DAN MUDAH.
Info Lebih Lanjut [ KONTAK KAMI]

Binomial Newton (Ekspansi Binomial) dalam Menentukan Koefisien Suku Banyak

Binomial Newton atau dikenal juga dengan Ekspansi Binomial bisa digunakan untuk menentukan koefisien suku banyak atau polinomial dengan pangkat besar. Misalkan saja: tentukan konstanta suku ke 5 dari $(2x-3y)^10$.

Dalam menghitung koefisien konstanta dari polinomial ini akan digunakan Kombinasi. Artinya, sekedar mengingatkan anda harus kembali ingat bahwasanya:
$_nC_r = \frac {n!}{(n-r)!r!}$

Berikutnya, dalam koefisien perpangkatan berlaku kaidah segitiga pascal.

Sederhananya, setiap perpangkatan bisa kita jabarkan dalam bentuk seperti ini,
$ \begin{align} (a+b)^0 & = 1 \\ (a+b)^1 & = a + b \\ (a+b)^2 & = a^2 + 2ab + b^2 \\ (a+b)^3 & = a^3 + 3a^2b + 3ab^2 + b^3 \\ (a+b)^4 & = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + y^4 \\ (a+b)^5 & = a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 \\ (a+b)^n & = ..... \end{align} $

Jika dalam jumlah besar, perpangkatan tersebut akan merepotkan anda membuat segitiga pascal. Solusinya, kita hubungkan segitiga pascal tersebut dengan Kombinasi. Dimana segitiga pascal dalam bentuk kombinasi tersebut bisa ditulis,
Apa arti semua itu? Mungkin sedikit memusingkan jika anda melihat teorema seperti itu saja. Sekarang mari kita lihat dalam bentuk Binomial Newto.

Bentuk Umum dari binomial tersebut adalah... 
$(a+b)^n = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r $.

Berikut contoh soal dan pembahasan mengenai Binomial Newton ini.

#Soal 1

Lakukan Ekspansi atau Jabarkalah Bentuk pangkat berikut ini,
a). $ (x+2)^4 $
b). $ (2a + 3b)^3 $
c). $ (a - 2b)^3 $
d). $ \left( x + \frac{2}{x} \right)^5 $

Pembahasan :
a). $ (x+2)^4 \, $ artinya $ n = 4 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ (x+2)^4 & = \displaystyle \sum_{r=0}^4 C_r^4 x^{4-r}2^r \\ & = C_0^4 x^{4-0}2^0 + C_1^4 x^{4-1}2^1 + C_2^4 x^{4-2}2^2 + C_3^4 x^{4-3}2^3 + C_4^4 x^{4-4}2^4 \\ & = 1. x^{4}.1 + 4. x^{3}.2 + 6. x^{2}.4 + 4. x^{1}.8 + 1. x^{0}.16 \\ (x+2)^4 & = x^{4} + 8x^{3} + 24 x^{2} + 32x + 16 \end{align} $

b). $ (2a + 3b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (2a + 3b)^3 & = \displaystyle \sum_{r=0}^3 C_r^3 (2a)^{3-r}(3b)^r \\ & = C_0^3 (2a)^{3-0}(3b)^0 + C_1^3 (2a)^{3-1}(3b)^1 + C_2^3 (2a)^{3-2}(3b)^2 + C_3^3 (2a)^{3-3}(3b)^3 \\ & = 1. (2a)^{3} .1 + 3. (2a)^{2}(3b) + 3. (2a)^{1}(3b)^2 + 1. (2a)^{0}(3b)^3 \\ & = 1. 2^3.a^3 .1 + 3. 2^2.a^2.(3b) + 3. (2a).3^2.b^2 + 1. 1.3^3.b^3 \\ (2a + 3b)^3 & = 8a^3 + 36a^2b + 54ab^2 + 27b^3 \end{align} $

c). $ (a - 2b)^3 \, $ artinya $ n = 3 $
$ \begin{align} (x+y)^n & = \displaystyle \sum_{r=0}^n C_r^n x^{n-r}y^r \\ (a-2b)^3 & = (a + (-2b))^3 \displaystyle \sum_{r=0}^3 C_r^3 a^{3-r}(-2b)^r \\ & = C_0^3 a^{3-0}(-2b)^0 + C_1^3 a^{3-1}(-2b)^1 + C_2^3 a^{3-2}(-2b)^2 + C_3^3 a^{3-3}(-2b)^3 \\ & = 1. a^{3}.1 + 3. a^{2}(-2b) + 3. a^{1}(-2b)^2 + 1. a^{0}(-2b)^3 \\ & = a^{3} + 3. a^{2}(-2b) + 3. a.(-2)^2.b^2 + 1. 1.(-2)^3.b^3 \\ (a-2b)^3 & = a^{3} -6a^2b + 12ab^2 -8b^3 \end{align} $

d). $ \left( x + \frac{2}{x} \right)^5 \, $ artinya $ n = 5 $
$ \begin{align} (a+b)^n & = \displaystyle \sum_{r=0}^n C_r^n a^{n-r}b^r \\ \left( x + \frac{2}{x} \right)^5 & = \displaystyle \sum_{r=0}^5 C_r^5 x^{5-r} \left( \frac{2}{x} \right)^r \\ & = C_0^5 x^{5-0} \left( \frac{2}{x} \right)^0 + C_1^5 x^{5-1} \left( \frac{2}{x} \right)^1 + C_2^5 x^{5-2} \left( \frac{2}{x} \right)^2 \\ & + C_3^5 x^{5-3} \left( \frac{2}{x} \right)^3 + C_4^5 x^{5-4} \left( \frac{2}{x} \right)^4 + C_5^5 x^{5-5} \left( \frac{2}{x} \right)^5 \\ & = 1. x^{5} .1 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{2^2}{x^2} \right) \\ & + 10. x^{2} \left( \frac{2^3}{x^3} \right) + 5. x^{1} \left( \frac{2^4}{x^4} \right) + 1. x^{0} \left( \frac{2^5}{x^5} \right) \\ & = x^5 + 5. x^{4} \left( \frac{2}{x} \right) + 10. x^{3} \left( \frac{4}{x^2} \right) \\ & + 10. x^{2} \left( \frac{8}{x^3} \right) + 5. x^{1} \left( \frac{16}{x^4} \right) + 1. x^{0} \left( \frac{32}{x^5} \right) \\ & = x^5 + 10 x^{3} + 40 x^{1} \\ & + 80 \left( \frac{1}{x} \right) + 80 \left( \frac{1}{x^3} \right) + \left( \frac{32}{x^5} \right) \\ \left( x + \frac{2}{x} \right)^5 & = x^5 + 10 x^{3} + 40 x + \frac{80}{x} + \frac{80}{x^3} + \frac{32}{x^5} \end{align} $


Cara Menentukan Koefisien dengan Binomial

Koefisien suku ke k dari sebuah perpangkatan $(a+b)^n $ bisa dihitung dengan rumus,
$_n C_{(k-1)} a^{n-(k-1)}b^{k-1}$

Sebagai Contoh Soal Mencari Koefisien Suku ke-k

Tentukanlah suku ke-3 dari $ (2x - 5y)^{20} \, $ dan tentukan juga koefisien dari suku ke-3 tersebut.
Pembahasan :
Bentuk binomial : $ (2x - 5y)^{20} \, $ artinya $ n = 20 $.
diinginkan suku ke-3 artinya $ k = 3 $.
Rumus suku ke-$k \, $ adalah $ \, C_{(k-1)}^n a^{n-(k-1)}b^{k-1} $ .

Suku ke-3 jadinya $ (2x - 5y)^{20} = (2x + (- 5y))^{20} \, $ :

$ \begin{align} C_{(k-1)}^n a^{n-(k-1)}b^{k-1} & = C_{(3-1)}^{20} (2x)^{20-(3-1)}(-5y)^{3-1} \\ & = C_{2}^{20} (2x)^{18}(-5y)^{2} \\ & = \frac{20!}{(20-2)!2!} . 2^{18}.x^{18}(-5)^2.y^{2} \\ & = \frac{20!}{18!2!} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19.18!}{18!.2.1} . 2^{18}.x^{18}.25.y^{2} \\ & = \frac{20.19}{2} . 2^{18}.x^{18}.25.y^{2} \\ & = 190 . 2^{18}.x^{18}.25.y^{2} \\ & = (190 \times 2^{18} \times 25). x^{18}y^{2} \\ & = 4750 \times 2^{18} x^{18}y^{2} \end{align} $.

Jadi suku ke tiga dari $ (2x - 5y)^{20} \, $ = $ \, 4750 \times 2^{18} x^{18}y^{2} \, $ dan koefisien pada suku ketiga tersebut adalah $ 4750 \times 2^{18} $.



Jadilah Komentator Pertama untuk "Binomial Newton (Ekspansi Binomial) dalam Menentukan Koefisien Suku Banyak"

Post a Comment