$$1) \displaystyle \lim_{x \to 0 } \frac{\sin \frac{4}{3}x}{\frac{1}{2}x} \\ 2) \displaystyle \lim_{x \to 0 } \frac{2\sin 3x}{5\sin 2x} \\ 3) \displaystyle \lim_{x \to 0 } \frac{3\tan 4x }{4\tan 6x} \\ 4) \displaystyle \lim_{x \to 0 } \frac{2\tan \frac{1}{2}x}{3 \sin \frac{1}{6}} \\ 5) \displaystyle \lim_{x \to 0 } \frac{4\sin 2x }{ 3\tan 8x } \\ 6) \displaystyle \lim_{x \to 0 } \frac{x \sin 2x }{\tan ^2 3x} \\ 7) \displaystyle \lim_{x \to \frac{1}{2}\pi } \frac{ 1 + \cos 2x }{ \cos x } \\ 8) \displaystyle \lim_{x \to \frac{1}{4}\pi } \frac{ \tan x - 1 }{ \cos 2x } \\ 9) \displaystyle \lim_{x \to 0 } \frac{ 1 - \cos 3x }{ 3x \tan \frac{1}{4}x } \\ 10) \displaystyle \lim_{x \to \frac{1}{2}\pi } \frac{ 1 - \sin x }{ x - \frac{1}{2}\pi } $$
$$ 11) \displaystyle \lim_{x \to 45^\circ } \frac{ \cos 2x }{ \cos x - \sin x } \\ 12) \displaystyle \lim_{x \to \infty } 3x \tan \frac{1}{5x} \\ 13) \text {Tentukan nilai } \\ \displaystyle \lim_{h \to 0 } \frac{f(x+h) - f(x) }{h} \\ \text { untuk fungsi f(x) = sin x } \\ 14) \displaystyle \lim_{x \to \frac{1}{2}\pi } (\csc ^2 x - \csc x \cot x ) \\ 15) \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ 1 - \tan x }{ \cot 2x } \\ 16) \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ 2(\sin x - \cos x) }{ 1 - \sin 2x } \\ 17) \displaystyle \lim_{x \to \frac{1}{4} \pi } \frac{ \cos 2x }{ \sqrt{2\cos x - 1 } } \\ 18) \displaystyle \lim_{x \to 0 } \frac{ 1 - \cos x }{ 1 - \cos 2x } \\ 19) \displaystyle \lim_{x \to 0 } \frac{ \sin ^2 3x + 2x \tan x }{ 55x^2 } \\ 20) \displaystyle \lim_{x \to 0 } \frac{ \sin ^2 x - \tan ^2 3 x }{ x^2 + \sin 3x \tan x } $$
$$ 21) \displaystyle \lim_{x \to \infty } x^2 (1 - \cos \frac{2}{x} ) \\ 22) \displaystyle \lim_{x \to 0 } \frac{ x\sin x + \tan ^2 x }{ 1 - \cos 2x } \\ 23) \displaystyle \lim_{x \to 5 } (x-5) \cot \pi x \\ 24) \displaystyle \lim_{x \to 0 } \frac{x^2 + 5x}{\sin 3x} \\ 25) \displaystyle \lim_{x \to -2 } \frac{1 - \cos (x+2)}{x^2 + 4x + 4} \\ 26) \displaystyle \lim_{x \to 0 } \frac{ \tan 3x \sin ^2 4x}{x^2 \sin 8x} \\ 27) \displaystyle \lim_{x \to 0 } \frac{ x(\cos ^2 6x - 1 )}{\sin 2x \tan ^2 3x } \\ 28) \displaystyle \lim_{x \to 1 } \frac{ \sin (1 - \frac{1}{x}) \cos (1 - \frac{1}{x}) }{ x-1 } \\ 29) \displaystyle \lim_{x \to 0 } \frac{1}{x} \left( \frac{\sin ^3 2x}{\cos 2x} + \sin 2x \cos 2x \right) \\ 30) \displaystyle \lim_{x \to \infty } 3x^2 (\sec \frac{2}{x} - 1 ) $$
Jadilah Komentator Pertama untuk "Kumpulan Soal Limit Trigonometri"
Post a Comment